Broadening DNS Research: beyond just DNS anonymization (work in progress)

John Heidemann joint work with Liang Zhu USC/ISI and USC/CS Dept.

22 October 2012

Copyright © 2012 by John Heidemann Release terms: CC-BY-NC 3.0 unported

how can students do research on DNS?

instrument a small, local server? data not necessarily representative

intern at (large company or operator)?

challenging to continue work when summer's over;

difficult for others to build on results

talk to the right folks?
perhaps in 1990s, but much tougher today

Our Goal

- broaden field of DNS researchers
- with sharable DNS data
 - combine technical and legal methods
 - address privacy questions
 - support IRB (Institutional Review Board) oversight => clean for academic use
- ultimately, accelerate DNS evolution

Challenge: Privacy Concerns

- what if data shows (important figure) is browsing (embarassing site)
 - Sergey Brin ... Google for dummies
 - Larry Ellison ... 99only.com
 - Felix Baumgartner ... Jolt Cola
 - (your example goes here)
- general privacy concerns
 - given enough data and effort, often something pops out
 - ex: 2006 AOL search data and searcher #4417749
- DNS-specific concerns
 - database-like use of DNS, ex: RBHL

Context: Growing Interest in Careful Sharing

- data sharing efforts
 - CRAWDAD.cs.dartmouth.edu: wireless datasets, NSF-supported
 - www.PREDICT.org: Protected Repository for the Defense of Infrastructure Against Cyber Threats, DHS-supported
 - SIE.isc.org: Security Information Exchange
 - ISC, CAIDA, USC, U. Mich, Ga. Tech., ICSI, and others...
- scrutiny of and guidelines for sharing
 - interest in sharing guidelines and more open data in academia (ACM Internet Measurements Conference)
 - role of IRB oversight in network research
 - The Menlo Report: Ethical Principles Guiding Information and Communication Technology Research (Dittrich and Kenneally, eds.)
- can we bring these together?

Our Approach: Combined Technical and Policy

- technical
 - aggregation
 - anonymization
 - separation
- policy
 - legal agreements
 - researcher-to-data
- best practices

- builds on existing work
- work-in-progress

(but hope that combination provides some new insight)

Aggregation for Anonymity

- built-in aggregation via recursive resolvers
 - replace end-user IP addresses
 - aggregate data from many users
 - \Rightarrow part of anonymization
- effects depend on observer's place in hierarchy
- open questions
 - can we estimate degree of aggregation?
 - can we identify (and filter when necessary) streams with insufficient aggregation?
 - what is the hierarchy, in practice?

Anonymization

- lots of collection tools
 - tcpdump, dnscap+dnsqr, nmsg, LANDER, etc.
- fewer anonymization
 - tcpmkpub (ISCI), U. Md. extensions for DNS
- our approach
 - building on ISCI/U. Md. approach
 - anonymize each DNS label (+salt) via hash
 - prefix-preserving anonymization of IPs (cryptopan)
 - hash ID field
 - hashes don't fit in pcap => output to simple text format
 - applies to queries and replies (examine each reply)

Attacks on Anonymity

statistical attacks

- stream with mix of frequent and infrequent labels
- adversary can identify frequent labels
 - www.
 - .com
- very powerful attack,
 but probably doesn't show
 much that is a suprise

injection attacks

- assume an adversary
 - can inject arbitrary queries
 - can observe anonymized results
- very powerful attack if part of injection is not anonymized
 - unusual query, special time, etc.
 - effectively creates a sidechannel

Controlling Access

- control access to traces to manage side-channel attacks
- legal agreement to access data
 - cannot attempt to de-anonymize
 - cannot redistribute data
- researcher-to-data
 - have researcher do analysis on provider's computers
 - provider has better control over local security and can audit analysis

Separating Access

- risk comes from saying "A asked for B"
- much less sensitive
 - "A asked for something"
 - and "someone asked for B"
 - and "reply for B is C"
- idea: separate streams
 - separate request and reply streams
 - remove linkage information (timing and IDs)
 - prohibit external linkage
- separate streams answer some research questions
- (work-in-progress)

Benefits

- enable new research
 - broader set of groups
 - new questions
- supported by publically available datasets
- perhaps sharing between commercial groups?
- open question: what questions can be done...
 - ...with anonymized data only?
 - ...started with anonymized, then moved?
 - what can definitely not be done

Alternatives

- many existing tools do DNS capture
 - our anonymization as optional back-end?
- some existing anonymization tools
 - tcpmkpub + U. Md. extensions
- regardless of choice of tool,
 sharing policy and IRB approaches benefit all

Broadening DNS Research

- work-in-progress
- combining
 - complete anonymization
 - stream separation
 - policy and access control
- ...to enable access to DNS data
- http://www.isi.edu/ant/

